钾离子电池先进阻燃电解质:石墨负极的高稳定储钾 | Science Bulletin
Science Bulletin, 2022, 67(15): 1581-1588
https://doi.org/10.1016/j.scib.2022.07.002
Progress and perspective on the growth of two-dimensional single crystals
钾离子电池先进阻燃电解质: 石墨负极的高稳定储钾
梁皓杰, 谷振一, 赵欣欣, 郭晋芝, 杨佳霖, 李文灏, 李苞, 刘治明, 孙中辉, 张景萍, 吴兴隆*
长按识别二维码,阅读全文
研究简介
在钾离子电池石墨负极中, 钾离子在石墨层间嵌入/脱出的模式能够实现储能, 且具有较低工作电位和廉价等优势, 表现出巨大的吸引力. 然而, 在缺乏足够界面保护等条件下, 石墨负极在传统碳酸酯类电解液中容易发生连续的副反应, 充放电容量会面临严重的持续衰减.
本文从电解液设计的角度出发, 针对石墨负极的钾离子存储问题, 配制了阻燃的局部高浓度电解液, 其特有的溶剂化结构可调控石墨表面固体电解质界面相, 改善界面的结构稳定性和离子传导特性, 从而实现石墨负极储钾的高稳定循环. 同时, 电解液的高阻燃特性也为钾离子电池的高安全性提供了保障.
图文导读
Fig. 1. Analyses of intrinsic component properties and overall functional testing.
(a) Frontier molecular orbital involving the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) energy levels diagram of different solvents and salt.
(b) Binding energy for KFSI with TEP and TTE under
DFT calculation, indicating the stronger interaction of TEP with K+.
(c–e) Wettability and flame tests using glass fiber separators soaked with different electrolytes.
Fig. 2. Theoretical simulations and characterizations for the electrolyte.
(a) Snapshot for the 1.13 mol kg-1 KFSI-TEP/TTE, enlarged solvation environment from regions 1 and 2, and corresponding simplified solvation models.
(b) K+ RDF obtained from simulations.
(c) Comparison of the PDOS of atoms from different components.
(d) Raman spectra corresponding to different electrolytes and solo solvent components. Regrettably, the characteristic peaks of TEP and FSI- coincide (700–750 cm-1), hindering
further FSI- fitting in CIPs and AGGs.
Fig. 3. Electrochemical properties of graphite anode in K-ion half cells.
(a) GCD curves of the initial five cycles at 0.05 A g-1 in the 1.13 mol kg-1 KFSI-TEP/TTE electrolyte.
(b) CV curves at 0.02 mV s-1.
(c) Cycling performance of graphite tested in K-ion half cells with different electrolytes (inset: CE for the preceding 20 cycles).
Fig. 4. Analyses and characterizations of the SEI layer.
(a) High-resolution XPS spectra (F 1s) for SEI on the surface of the graphite anode after 50 cycles in different electrolytes.
(b) S 2p, (c) N 1s, and (d) P 2p XPS spectra in 1.13 mol kg-1 KFSI-TEP/TTE electrolyte.
(e) Morphology characterization by HRTEM.
(f) Evolution of the interfacial resistance of the graphite half cells from pristine to 300 cycles.
Fig. 5. Schematic diagram of the optimized electrolyte structure and constructed SEI.
第一作者
梁皓杰
博士研究生在读,东北师范大学。主要研究方向为
Na/K离子电池的碳质阳极和相应的电解质。
通讯作者
吴兴隆
教授,东北师范大学。主要研究方向先进能源存储材料,如Na/K/Li离子电池和二元电池电池、废锂的再利用和回收等。
相关阅读